PERBEDAAN MESIN 4TAK DAN 2TAK
4
TAK
Four
stroke engine adalah sebuah mesin dimana untuk menghasilkan sebuah
tenaga memerlukan empat proses langkah naik-turun piston, dua kali
rotasi kruk as, dan satu putaran noken as (camshaft).
Empat
proses tersebut terbagi dalam siklus :
Langkah
hisap : Bertujuan untuk memasukkan kabut udara – bahan bakar ke
dalam silinder. Sebagaimana tenaga mesin diproduksi tergantung dari
jumlah bahan-bakar yang terbakar selama proses pembakaran.
Prosesnya
adalah ;
- Piston bergerak dari Titik Mati Atas (TMA) menuju Titik Mati Bawah (TMB).
- Klep inlet terbuka, bahan bakar masuk ke silinder
- Kruk As berputar 180 derajat
- Noken As berputar 90 derajat
- Tekanan negatif piston menghisap kabut udara-bahan bakar masuk ke silinder
LANGKAH
KOMPRESI
Dimulai
saat klep inlet menutup dan piston terdorong ke arah ruang bakar
akibat momentum dari kruk as dan flywheel.
Tujuan
dari langkah kompresi adalah untuk meningkatkan temperatur sehingga
campuran udara-bahan bakar dapat bersenyawa. Rasio kompresi ini juga
nantinya berhubungan erat dengan produksi tenaga.
Prosesnya
sebagai berikut :
- Piston bergerak kembali dari TMB ke TMA
- Klep In menutup, Klep Ex tetap tertutup
- Bahan Bakar termampatkan ke dalam kubah pembakaran (combustion chamber)
- Sekitar 15 derajat sebelum TMA , busi mulai menyalakan bunga api dan memulai proses pembakaran
- Kruk as mencapai satu rotasi penuh (360 derajat)
- Noken as mencapai 180 derajat
LANGKAH
TENAGA
Langkah
Tenaga
Dimulai
ketika campuran udara/bahan-bakar dinyalakan oleh busi. Dengan cepat
campuran yang terbakar ini merambat dan terjadilah ledakan yang
tertahan oleh dinding kepala silinder sehingga menimbulkan tendangan
balik bertekanan tinggi yang mendorong piston turun ke silinder bore.
Gerakan linier dari piston ini dirubah menjadi gerak rotasi oleh kruk
as. Enersi rotasi diteruskan sebagai momentum menuju flywheel yang
bukan hanya menghasilkan tenaga, counter balance weight pada kruk as
membantu piston melakukan siklus berikutnya.
Prosesnya
sebagai berikut :
- Ledakan tercipta secara sempurna di ruang bakar
- Piston terlempar dari TMA menuju TMB
- Klep inlet menutup penuh, sedangkan menjelang akhir langkah usaha klep buang mulai sedikit terbuka.
- Terjadi transformasi energi gerak bolak-balik piston menjadi energi rotasi kruk as
- Putaran Kruk As mencapai 540 derajat
- Putaran Noken As 270 derajat
LANGKAH
BUANG
Exhaust
stroke
Langkah
buang menjadi sangat penting untuk menghasilkan operasi kinerja mesin
yang lembut dan efisien. Piston bergerak mendorong gas sisa
pembakaran keluar dari silinder menuju pipa knalpot. Proses ini harus
dilakukan dengan total, dikarenakan sedikit saja terdapat gas sisa
pembakaran yang tercampur bersama pemasukkan gas baru akan mereduksi
potensial tenaga yang dihasilkan.
Prosesnya
adalah :
- Counter balance weight pada kruk as memberikan gaya normal untuk menggerakkan piston dari TMB ke TMA
- Klep Ex terbuka Sempurna, Klep Inlet menutup penuh
- Gas sisa hasil pembakaran didesak keluar oleh piston melalui port exhaust menuju knalpot
- Kruk as melakukan 2 rotasi penuh (720 derajat)
- Noken as menyelesaikan 1 rotasi penuh (360 derajat)
FINISHING
PENTING — OVERLAPING
Overlap
adalah sebuah kondisi dimana kedua klep intake dan out berada dalam
possisi sedikit terbuka pada akhir langkah buang hingga awal langkah
hisap.
Berfungsi
untuk efisiensi kinerja dalam mesin pembakaran dalam. Adanya hambatan
dari kinerja mekanis klep dan inersia udara di dalam manifold, maka
sangat diperlukan untuk mulai membuka klep masuk sebelum piston
mencapai TMA di akhir langkah buang untuk mempersiapkan langkah
hisap. Dengan tujuan untuk menyisihkan semua gas sisa pembakaran,
klep buang tetap terbuka hingga setelah TMA. Derajat overlaping
sangat tergantung dari desain mesin dan seberapa cepat mesin ini
ingin bekerja.
manfaat
dari proses overlaping :
- Sebagai pembilasan ruang bakar, piston, silinder dari sisa-sisa pembakaran
- Pendinginan suhu di ruang bakar
- Membantu exhasut scavanging (pelepasan gas buang)
- memaksimalkan proses pemasukkan bahan-bakar
2
TAK
Mesin
dua tak adalah mesin pembakaran dalam yang dalam satu siklus
pembakaran terjadi dua langkah piston, berbeda dengan putaran
empat-tak yang mempunyai empat langkah piston dalam satu siklus
pembakaran, meskipun keempat proses (intake, kompresi, tenaga,
pembuangan) juga terjadi.
Mesin
dua tak juga telah digunakan dalam mesin diesel, terutama rancangan
piston berlawanan, kendaraan kecepatan rendah seperti mesin kapal
besar, dan mesin V8 untuk truk dan kendaraan berat lainnya.
Animasi
cara kerja mesin dua tak.
Prinsip
kerja
Untuk
memahami prinsip kerja, perlu dimengerti istilah baku yang berlaku
dalam teknik otomotif :
- TMA (titik mati atas) atau TDC (top dead centre), posisi piston berada pada titik paling atas dalam silinder mesin atau piston berada pada titik paling jauh dari poros engkol (crankshaft).
- TMB (titik mati bawah) atau BDC (bottom dead centre), posisi piston berada pada titik paling bawah dalam silinder mesin atau piston berada pada titik paling dekat dengan poros engkol (crankshaft).
- Ruang bilas yaitu ruangan dibawah piston dimana terdapat poros engkol (crankshaft), sering disebut dengan bak engkol (crankcase) berfungsi gas hasil campuran udara, bahan bakar dan pelumas bisa tercampur lebih merata.
- Pembilasan (scavenging) yaitu proses pengeluaran gas hasil pembakaran dan proses pemasukan gas untuk pembakaran dalam ruang bakar.
Langkah
kesatu
Piston
bergerak dari TMA ke TMB.
- Pada saat piston bergerak dari TMA ke TMB, maka akan menekan ruang bilas yang berada di bawah piston. Semakin jauh piston meninggalkan TMA menuju TMB, tekanan di ruang bilas semakin meningkat.
- Pada titik tertentu, piston (ring piston) akan melewati lubang pembuangan gas dan lubang pemasukan gas. Posisi masing-masing lubang tergantung dari desain perancang. Umumnya ring piston akan melewati lubang pembuangan terlebih dahulu.
- Pada saat ring piston melewati lubang pembuangan, gas di dalam ruang bakar keluar melalui lubang pembuangan.
- Pada saat ring piston melewati lubang pemasukan, gas yang tertekan dalam ruang bilas akan terpompa masuk dalam ruang bakar sekaligus mendorong gas yang ada dalam ruang bakar keluar melalui lubang pembuangan.
- Piston terus menekan ruang bilas sampai titik TMB, sekaligus memompa gas dalam ruang bilas masuk ke dalam ruang bakar
Langkah
kedua
Piston
bergerak dari TMB ke TMA.
- Pada saat piston bergerak TMB ke TMA, maka akan menghisap gas hasil percampuran udara, bahan bakar dan pelumas masuk ke dalam ruang bilas. Percampuran ini dilakukan oleh karburator atau sistem injeksi. (Lihat pula:Sistem bahan bakar)
- Saat melewati lubang pemasukan dan lubang pembuangan, piston akan mengkompresi gas yang terjebak dalam ruang bakar.
- Piston akan terus mengkompresi gas dalam ruang bakar sampai TMA.
- Beberapa saat sebelum piston sampai di TMA, busi menyala untuk membakar gas dalam ruang bakar. Waktu nyala busi sebelum piston sampai TMA dengan tujuan agar puncak tekanan dalam ruang bakar akibat pembakaran terjadi saat piston mulai bergerak dari TMA ke TMB karena proses pembakaran sendiri memerlukan waktu dari mulai nyala busi sampai gas terbakar dengan sempurna.
Perbedaan
desain dengan mesin empat tak
- Pada mesin dua tak, dalam satu kali putaran poros engkol (crankshaft) terjadi satu kali proses pembakaran sedangkan pada mesin empat tak, sekali proses pembakaran terjadi dalam dua kali putaran poros engkol.
- Pada mesin empat tak, memerlukan mekanisme katup (valve mechanism) dalam bekerja dengan fungsi membuka dan menutup lubang pemasukan dan lubang pembuangan, sedangkan pada mesin dua tak, piston dan ring piston berfungsi untuk menbuka dan menutup lubang pemasukan dan lubang pembuangan. Pada awalnya mesin dua tak tidak dilengkapi dengan katup, dalam perkembangannya katup satu arah (one way valve) dipasang antara ruang bilas dengan karburator dengan tujuan :
- Agar gas yang sudah masuk dalam ruang bilas tidak kembali ke karburator.
- Menjaga tekanan dalam ruang bilas saat piston mengkompresi ruang bilas.
- Lubang pemasukan dan lubang pembuangan pada mesin dua tak terdapat pada dinding silinder, sedangkan pada mesin empat tak terdapat pada kepala silinder (cylinder head). Ini adalah alasan paling utama mesin 4 tak tidak menggunakan oli samping.
Kelebihan
dan kekurangan
Kelebihan
mesin dua tak
Dibandingkan
mesin empat tak, kelebihan mesin dua tak adalah :
- Mesin dua tak lebih bertenaga dibandingkan mesin empat tak.
- Mesin dua tak lebih kecil dan ringan dibandingkan mesin empat tak.
- Kombinasi kedua kelebihan di atas menjadikan rasio berat terhadap tenaga (power to weight ratio) mesin dua lebih baik dibandingkan mesin empat tak.
- Mesin dua tak lebih murah biaya produksinya karena konstruksinya yang sederhana.
Meskipun
memiliki kelebihan tersebut di atas, jarang digunakan dalam aplikasi
kendaraan terutama mobil karena memiliki kekurangan.
Kekurangan
mesin dua tak
Kekurangan
mesin dua tak dibandingkan mesin empat tak
- Efisiensi mesin dua tak lebih rendah dibandingkan mesin empat tak.
- Mesin dua tak memerlukan oli yang dicampur dengan bahan bakar (oli samping/two stroke oil) untuk pelumasan silinder mesin.
- Kedua hal di atas mengakibatkan biaya operasional mesin dua tak lebih tinggi dibandingkan mesin empat tak.
- Mesin dua tak menghasilkan polusi udara lebih banyak, polusi terjadi dari pembakaran oli samping dan gas dari ruang bilas yang terlolos masuk langsung ke lubang pembuangan.
- Pelumasan mesin dua tak tidak sebaik mesin empat tak, mengakibatkan usia suku cadang dalam komponen ruang bakar relatif lebih rendah.